Future of DR

March 3, 2011

Sila Kiliccote, Mary Ann Piette, Dave Watson, Rish Ghatikar

Deputy, DRRC
Program Manager, LBNL
SKiliccote@lbl.gov

Presentation Overview

- Trends
 - Policy
 - Technology
 - Implementations
- Load As Resource in Ancillary Services Markets
- Future directions towards responsive buildings

Trends

Policy

Dynamic Rates

- Large C&I, residential, small commercial

Codes and Standards

-Title 24, US Green Building Council's LEED Credits

Smart Grid Standards effort

Ancillary Services

Technology

Integration of Renewables

Energy Storage Technologies – Can DR replace storage?

PHEVs and EVs

Implementation

Linking Energy Efficiency and DR

Utility Implementations

Smart Grid Investment and Demonstration Grants

Demand Side Management and Automated DR Future

Increasing Levels of Granularity of Control Increasing Speed of Telemetry

DR for Integrating Renewable Resources (IRR)

- California's Renewable Portfolio Standards: 33% renewable integration by 2020
- Wind and Solar resources are variable and intermittent
- Challenges:
 - Intra-hour variability
 - Ramping
 - Forecast error
 - Over generation

Goal: Identify communications needs and develop strategies in C&I facilities and test these to address the renewable integration challenges.

CAISO Ancillary Services Market

AutoDR for Existing CAISO A/S products	Service	Response Time	Duration
AutoDR	Regulation Up	Start <1 min. Reach bid <10 min.	15 - 60 min.
AutoDR	Regulation Down	Start <1 min. Reach bid <10 min.	15 - 60 min.
AutoDR	Non- Spinning Reserve	< 10 minutes	30 min.
Future (?)	Spinning Reserves	~ Instant Start Full Output <10 min.	30 min.

Participating Load Pilot (PLP)

Acronyms:

EMS – Energy Management System

ADS – Automatic Dispatch System

SIBR – Scheduling Infrastructure Business Rules

DRAS – DR Automation Server

CLIR – Client Logic with Integrated Relay

DR Strategies at Participating Load Pilot Sites

Site	DR Strategy	DR Period
IKEA EPA	Turning off 11 RTUs out of 43 and raising zone setpoints to 76 DegF	Noon to 6 pm
Contra	4 DegF Global Temperature	
Costa	Adjustment with 1 DegF	2 pm to 6 pm
County	increments	
Svenhards	Turn off Pan Washer	3 pm to 5 pm

Contra Costa County Building -

Load regarded as Pseudo Generation

Pseudo Generation = Forecasted – Actual Demand

What we learned from the Participating Load Pilot

- HVAC as an end use and global temperature adjustment as a DR strategy meet the requirements for wholesale ancillary services.
- OpenADR specification is used to communicate wholesale DR events in an open and interoperable way.
 - Customer's transition from Auto-DR programs to PLP is seamless
- Internet can be used for fast DR to dispatch nonspinning ancillary services.
- Pseudo Generation is how DR resources are represented as generation.

Challenges with using load for Regulation Up and Regulation Down Products

- Communication challenges:
 - Four second telemetry
 - Poll vs. Push
 - Close-loop vs. Open-Loop
- Demand Side issues:
 - Which end-use, How long, how often, how much?
 - How to represent DR as pseudo generator
- Integration issues
 - How can CAISO instruct a DR resource?

Pseudo Generation For Regulation Up and Regulation Down

Offset = Max Regulation Down

Why 4 Second Telemetry

For each resource, CAISO requests the following:

- -Ramp Rate (MW/s)
- -High operating Limit
- -Low Operating Limit

When CAISO instructs a set point to a resource, 4 sec. telemetry is used to make sure the resources is following its projected ramp rate and operating limits

Pre-Analysis of Sites – Load Statistical Summary (LSS)

LSS a plot of average, minimum and maximum points for a given range of dates.

- Refined to display Near-base load and near-high load (2.5 and 97.5 percentile values) (Price 2010)

Sample LSS

Pseudo Generation Graphs with LSS

Residual University Of California Merced for October, 2010

End Uses & Response

End Use	Туре	Ramp Down	Switching Off
HVAC	Chiller Systems	Setpoint Adj.	
	Package Unit	Setpoint Adj.	Disable Compressors
Lighting	Dimmable	Reduce Level	
	On/Off		Bi-Level Off
Refrig/Frozen Warehouse		Setpoint Adj.	
Data Centers		Setpoint Adj., Reduce CPU Processing	
Ag. Pumping			Turn Off selected pumps
Wastewater			Turn Off selected pumps

Enablement Process

- Memorandum of Understanding (MOU) between Facility and Lawrence Berkeley National Laboratory
- Schedule meetings for enablement (controls vendors, LBNL, Akuacom and facilities)
 - Control Strategies
 - Communication Infrastructure
 - Telemetry Installation
- Communication and Control Test

Pilot Timeline

- February Recruitment and Enablement
- March Enablement
- April Communication and Control Tests
- May through October Field Tests
- November Data analysis and report development
- December Final Report

Future Directions DR strategies as a "Modes" in Optimized Control

- Orchestrate modes using schedules, signals, optimization algorithms:
 - Occupied/Unoccupied
 - Maintenance/Cleaning
 - Warm up/Cool down
 - Night purge/Pre-cooling
 - DR modes
- Intelligence needed for decision making
- Financial feedback systems need to present operational value
- Embed DR communications client in EMCS work toward codes, support BACnet and LON interoperability

See http://drrc.lbl.gov/ for publications

THANK YOU!

Sila Kiliccote

skiliccote@lbl.gov

drrc.lbl.gov

